mercredi 16 juillet 2014

la photogramétrie aérienne (detaillé)

la photogramétrie aérienne (detaillé)




La photogrammétrie est une technique qui consiste à effectuer des mesures dans une scène, en utilisant la parallaxe obtenue entre des images acquises selon des points de vue différents. Recopiant la vision stéréoscopique humaine,
elle a longtemps exploité celle-ci pour reconstituer le relief de la scène à partir de cette différence de points de vue. Actuellement, elle exploite de plus en plus les calculs de corrélation entre des images désormais numériques. Cette technique repose entièrement sur une modélisation rigoureuse de la géométrie des images et de leur acquisition afin de reconstituer une copie 3D exacte de la réalité.

Principe général

Le principe général est basé sur la perception humaine du relief par observation stéréoscopique. Pour le cas de la photogrammétrie aérienne, un avion équipé d'une chambre de prise de vues vole au-dessus d'une région, de façon qu'une partie du terrain figure sur deux clichés correspondant à deux positions différentes de l'avion.
Si on observe simultanément un cliché avec un œil et le second avec l'autre œil grâce à un outil optique approprié (stéréoscope à miroirs, appareil de restitution, ordinateur équipé de lunettes spéciales, etc.), on voit en relief la zone de terrain vue sur les deux images. La vision humaine permet en effet de voir en relief dans une large gamme de dispositions relatives de ces deux images. Mais si nous disposons ces dernières dans une position relative exactement semblable à celle qu'elles avaient au moment de la prise de vue, alors l'image stéréoscopique observée est une exacte homothétie du terrain réel photographié, pour autant que la chambre de prise de vue soit parfaite (c'est-à-dire n'apporte aucune distorsion à l'image, on l'appelle alors chambre "métrique"), ou que l'image ait été corrigée de sa distorsion. Pour exploiter alors cette scène stéréoscopique, l'appareil de restitution superpose à chaque image un point (le "ballonnet"), que la vision humaine comprendra comme un petit objet dont la position est déplaçable à volonté en hauteur au-dessus de l'image du terrain grâce à des commandes appropriées. L'opérateur aura donc pour travail de promener ce ballonnet dans l'image sur tous les objets à mesurer, pendant que l'appareil archivera toutes les informations numériques produites.
Pour que l'image observée soit une copie exacte de l'objet mesuré, il faut contraindre un certain nombre de points dans l'image en les obligeant à être à des positions relatives similaires aux leurs sur l'objet. Pour un couple stéréoscopique donné, on montre qu'il faut 6 points connus pour que l'image soit fidèle. Ces points seront mesurés : cette opération est appelée stéréopréparation. Lorsque de nombreux couples stéréoscopiques sont enchaînés (bande de clichés aériens), on peut limiter le nombre de points terrain à mesurer en analysant toutes les contraintes géométriques qui se transmettent de cliché à cliché. Le processus de calcul, très complexe, s'appelle aérotriangulation. Par ailleurs, la manipulation des grandes quantités de données numériques extraites est résolue par des logiciels spécialisés, outils permettant la mise en forme finale des données sorties de l'appareil, d'entrée des corrections en provenance des équipes de terrain (qui complètent les levers de toutes les informations non visibles sur les clichés et corrigent les points douteux, phase dite de complètement), et enfin de formatage et d'édition des données selon les besoins du client.

Bases géométriques


La formalisation géométrique de la stéréoscopie repose sur deux types d'équations, tous deux largement utilisés en photogrammétrie et en vision par ordinateur, le but étant de déterminer l'orientation relative des images à partir des points identifiés comme homologues dans deux images :
  • L'équation de colinéaritéa et a' étant les images du point A de l'espace réel dans deux plans images (correspondant à deux positions successives du plan focal d'une caméra donnée), on écrit simplement le fait que a{S_1} et A sont alignés, ainsi que a'{S_2} et A. Ces expressions ne sont rigoureusement exactes que si les optiques employées sont dépourvues de distorsion (ou corrigées de celle-ci). Cette approche est historiquement celle qui a été utilisée en photogrammétrie, son principal inconvénient résulte du fait que le problème de l'orientation relative de deux images est ici non linéaire, et exige donc une solution approchée pour démarrer les calculs. Cette solution approchée est simple en photogrammétrie aérienne, car les axes de prises de vues sont quasiment verticaux, les images étant sensiblement orientées de façon similaire. La démarche consiste donc à calculer l'orientation relative des images, puis à mettre l'objet 3D ainsi obtenu à sa place dans l'espace (orientation absolue), et enfin le mettre à l'échelle.
  • L'équation de coplanarité. L'approche est un peu différente, même si elle est géométriquement équivalente, on écrit que les vecteurs \scriptstyle\overrightarrow {A a}  \overrightarrow{A a'}  et  \overrightarrow{T}  sont coplanaires. Cette méthode est la base de la résolution de l'orientation relative au sein de la communauté de la vision par ordinateur. Les trois vecteurs étant coplanaires, on exprime que leur produit mixte est nul, ce qui peut s'écrire comme une forme quadratique basée sur une matrice, appelée "matrice essentielle" (terme consacré). Cette matrice résulte du produit de l'axiateur formé à partir de la translation  \overrightarrow{T}  avec la matrice de rotation permettant de passer du référentiel de l'image 2 à celui de l'image 1. Cette approche suppose la connaissance préalable des paramètres géométriques de l'acquisition d'images (position de l'axe optique par rapport à l'image, valeur de la distance focale, distorsion, etc.). Pour les cas où ces paramètres sont inconnus, la modélisation doit se passer de certains éléments indispensables à la reconstruction géométrique complète. Néanmoins, si l'on admet de travailler en géométrie projective, qui est parfaitement adaptée à cette situation, on peut quand même obtenir des éléments très utiles, et cette situation est fréquemment rencontrée en vision par ordinateur. On utilise alors encore une forme quadratique, mais cette fois basée sur la "matrice fondamentale" (autre terme consacré).
L'identification des points homologues a longtemps exigé une intervention humaine, et représentait alors une phase de travail assez coûteuse. Désormais, on parvient de façon de plus en plus efficace à l'obtenir de façon automatique, les algorithmes les plus employés étant celui de Harris (détection des éléments d'images qui s'apparentent à des coins) et plus récemment celui de Lowe (méthode appelée SIFT, pour Scale Invariant Feature Transform).
partager ! :)


Tags: , , , , , ,

0 Responses to “la photogramétrie aérienne (detaillé)”

Enregistrer un commentaire

Subscribe

Pour recevoir les nouveautés ! veuillez saisir ici votre adresse e-mail !

© 2013 TopSig. All rights reserved.
Designed by :::TopSig:::